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Maths reminder for Electrochemists 
Part I: The simplicity of complex numbers and impedance diagrams 

 

I – INTRODUCTION 
The results of impedance measurements are 
complex numbers. Electrochemists are 
sometimes unfamiliar with these numbers (or 
they forget about them). This note aims to 
give the mathematical background necessary 
to understand and analyze EIS diagrams. 
Some common characteristics and best 
practice techniques in impedance analysis are 
also explained to help electrochemists. 
 
II – COMPLEX NUMBER 
II - 1 DEFINITION 
A complex number is a set of two real 
numbers a and b written as 
 
Z a ib= +  (or Z a jb= +  )                               (1) 
i  is the imaginary unit, with 2 1i = −  or 

1i = −  . 

Figure 1: Image of a complex number in the complex 
plane. 
A complex number can be viewed as a point in 
a two-dimensional Cartesian1 coordinate 
system called the complex plane or Argand di-
agram [1], where the real part of Z is plotted 
as abscissa (Re Z = |Z| cos ϕ), and its 
imaginary part as ordinate (Im Z = |Z| sin ϕ). 
Z is the affix of M, M is the image of Z (Fig. 1). 
                                                      
1 The invention of Cartesian coordinates is due to the 
French mathematician and philosopher René 
Descartes (1596-1650). 

II - 2 NOTATIONS 
Many notations of complex number can be 
found in literature, just some of these are 
noted below. 
 

• Re Z, Im Z 
• ℜZ, ℑZ 
• Z′, Z′′ 
• ZRe, ZIm 
• Zr, Zj 
• |Z| cos(ϕ), |Z| sin(ϕ) 

 
II - 3 COMPLEX CONJUGATE 

a. Definition 
The complex conjugate Z* of a complex 
number Z is defined by 
 

*Z a ib Z a ib= + ⇒ = −  
 

b. Cartesian form of a complex number 
Using the conjugate complex enables us to 
express complex numbers in the Cartesian (or 
rectangular or algebraic) form a + i b. For 
example, the Cartesian form of the inverse of 
a complex number is written: 
 

( )( )

2 2 2 2 2 2

1 1 a ib
z a ib a ib a ib

a ib a bi
a b a b a b

−
= =

+ − +

−
= = −

+ + +

                             (2) 

 
Let us now consider the impedance of the 
electrical RC parallel circuit. It is given by [2]: 
 

( )
1

RZ
RCi

ω
ω

=
+

                                              (3) 
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With 2 fω π= . Using Eq. (2), the rectangular 
form of the impedance of an RC parallel circuit 
is given by: 

2 2 2Re ( )
1

RZ
C R

ω
ω

=
+

  

                                                                             (4) 
2

2 2 2Im ( )
1
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C R

ωω
ω

= −
+

 

 
III – PLOTS OF COMPLEX FUNCTION 
III - 1 Re(Z); Im(Z); vs. f OR log(f) ? 
The real and imaginary parts of the 
impedance of an RC parallel circuit (Eq. (4)) 
depend on the frequency f. It is therefore 
possible to plot the change of the real and 
imaginary parts with the frequency f (Fig. 2)2. 
Please note that electrochemists usually plot 
−Im Z vs. Re Z, in such a way that that 
impedance diagrams are shown in the upper 
right hand part of axes. From now on, in this 
note, we will use this type of representation. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Plots of Re Z vs: f and Im Z vs: f for the RC 
parallel circuit. 
 
The frequency may vary over several decades. 
It is therefore better to plot the changes of Re 
Z and Im Z with the logarithm of the freq-
uency, as shown in Fig. 3. 

                                                      
2 All the figures were plotted using the simulation tool 
Z Sim from EC-Lab®. 

 
Figure 3: Plots of Re Z vs. log f and Im Z vs. log f for the 
RC parallel circuit. 
 
III - 2 NYQUIST PLANE 
The diagrams shown in Fig. 3 can be plotted in 
a parametric plot with x = Re Z et y = Im Z. Such 
a graph is called Nyquist plot, Nyquist diagram 
or Nyquist graph. Each value of f determines a 
point (x = Re Z, y = −Im Z) that we can plot on 
a coordinate plane. As f varies, the point (x, y) 
varies and traces out a curve called a para-
metric curve. A Nyquist plot is simply a para-
metric plot of a frequency response. 
 

a. Why use orthonormal axes? 
Figure 4 shows the Nyquist diagram of the 
Randles circuit impedance [2, 3] plotted in 
cartesian orthonormal axes, i.e. axes with the 
same unit of length. It is made up of  low 
frequencies of a semi-line forming a −π/4 or 
−45° angle (be careful, −π/4, due to the minus 
sign in the y coordinate, and not π/4 as the 
representation of electrochemists suggests) 
with the real axis and at high frequencies of an 
arc looking like a semi-circle. 
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Figure 4: Orthonormal Nyquist diagram for the 
Randles circuit. 
 

 
Figure 5: Non orthonormal Nyquist diagram for the 
Randles circuit. 
 
Figure 5 shows the impedance diagram of 
the Randles circuit for the values of  
parameters in Fig. 4, now using non-
orthonormal axes. The semi-line at low 
frequencies does not form a −π/4 angle with 
the real axis and the high frequency arc is not 
a semi-circle any-more. It is easier to identify 
characteristic shapes using orthonormal 
axes. If a non-orthonormal representation is 
used then it must be explicitly justified as 
shown in [4, 5]. 
 

b. Why is the Nyquist diagram of the 
impedance of an RC parallel circuit a 
semi-circle? 

                                                      
3Not the maximum as the representation of the 
electrochemists suggests. 

The expression of the admittance, 
Y (ω) = 1/Z(ω), for an RC parallel circuit can 
be simply written: 

( ) ( ) ( )
1 1

1
RZ Y
RCi Z R Ci

ω ω
ω ω ω

= ⇒ = =
+ +

  

The Nyquist diagram of the admittance of 
the RC parallel circuit is made up of a semi-
line (Fig. 6). The inverse of a semi-line is a 
semi-circle, therefore the graph of the 
impedance is a semi-circle. 

Figure 6: Impedance and admittance diagrams of an 
RC parallel circuit. 
 

c. Why specify frequencies on a Nyquist 
diagram? 
 

The Nyquist diagram of Fig. 6 allows the deter-
mination of the value of the resistance R in the 
RC parallel circuit (R = 1 Ω). The value of the 
capacitance C cannot be determined, since no 
information about the frequency is given. 
What is needed is the value of the frequency 
of the point in the graph with the minimal 
imaginary part3 i.e. at the apex of the diagram. 
At this frequency fc : 
 

1
2 c

C
f Rπ

=                                                      (5) 
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For cf  = 1560 Hz, 410C −≈  F. 
 
III - 3 BODE PLANE 

a. Modulus and phase plots 
The modulus (also named module or magn-
itude) of an RC parallel circuit impedance is 
given by: 
 

( )( ) ( )( )2 2

2

2 2 2 2 2 2

Re Im

1 1

Z Z Z

R R
C R C R

ω ω

ω ω

= +

= =
+ +

                     (6) 

 
With (Fig. 7) 

0

1lim ,Z R Z
Cω

ω
ω→

= →∞⇒ ≈                      (7) 

The phase of an RC parallel circuit impedance 
is given by: 

( )
( ) ( )Im

arctan arctan
ReZ

Z
CR

Z
ω

φ ω
ω

 
= = −  

 
     (8) 

0
lim 0, lim

2Z Zω ω

πφ φ
→ →∞

= = −                                     (9) 

 
Figure 7: Bode magnitude and phase plots for an RC 
parallel circuit. R = 103 Ω, C = 10 6 F. 
 

b. Why plot the impedance modulus and 
phase? 

Measuring the impedance modulus change 
with the frequency is not sufficient to charac-
terize an electrical circuit4. Figs. 7 and 8 show 
the Nyquist and Bode plots of an RC parallel 
circuit with R > 0 and R < 0, respectively. 

                                                      
4 In some cases, measuring the impedance modulus is 
enough as the plane can be deduced from Kramers-
Kronig transformations, and vice versa [6]. 

 
Figure 8: Bode magnitude and phase plots for an RC 
parallel circuit. R = 103 Ω, C = 106 F. 
 
Such graphs commonly occur in corrosion 
protection, for example in the study of passi-
vation phenomenon [7]. Modulus plots are 
identical but phase plots are different. The 
characterization of the electrical circuit is 
complete only if both the phase and the 
modulus are plotted. The reason lies in the 
term 2R  in Eq. (6). The value of the modulus 
is the same for R=103 Ω and R=-103 Ω. On the 
contrary the phase given by Eq. (8) depends 
on the sign of R. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Comparison of the impedance phase for R>0 
(red) and R<0 (blue). 
 
Figure 10 shows Nyquist diagrams for R > 0 et 
R < 0. The first diagram lies in the right hand 
side of the complex plane and the second in 
the left hand side. 
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Figure 10: Nyquist diagrams for a RC parallel circuit. 
C = 10 6  F, top: R = 103 Ω, bottom:R = 103 Ω. 
 

IV – CONCLUSION 
Many representations are available to show 
impedance data due to them having complex 
values. Depending on the information of 
interest, the user can pick the right repre-
sentation. The advantages and drawbacks of 
the main plots, Nyquist and Bode, are shown 
in Tab. I. 
 
Table I: Advantages and drawbacks of Nyquist and 
Bode plots. 

 Advantages Drawbacks 
Bode Explicit 

frequencies 
Two 
plots 

Nyquist One 
plot 

Implicit 
frequencies 
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