

How to use Bio-Logic products to test batteries ?

N. Murer

- **1.** Configuration
- 2. DC techniques
- 3. Impedance spectroscopy
- 4. Processing data

Configuration

- **REF1** : Red for the control and the measurement of the working electrode potential.
- REF2 : White for the control and the measurement of the reference electrode potential.
- **REF3** : Blue for the control and the measurement of the counter electrode potential.
- CA2 (Control amplifier): Red for the control and the measurement of the working electrode current (standard mode).
- CA1: Blue for the control and the measurement of the counter electrode current (standard mode).
- GND (Ground): Black

BioLogic Science Instruments

Batteries Testing Applications

Outline

- 1. Configuration
- 2. DC techniques
- 3. Impedance spectroscopy
- 4. Processing data

The most basic technique to characterize batteries is CP (ChronoPotentiometry). It consists in applying a positive or negative constant current and recording the evolution of the cell voltage with time.

Bio**Logic** Science Instruments

Advanced Settings Cell Characteristics Parameters Settings	✓ Turn to OCV between techniques I → □ Apply $I_s = 50,000$ A ∨ vs. (None) ∨ for $I_s = 0$ h 0 mn 10,000 0 s Limits Ewe > EM = pass V IAQI > AQM = 138,889 mA.h ∨ Record Ewe → every dE _s = 1,0 mV or dI _s = 0,100 0 s E Range = 0V; 5V → Resolution = 5 µV I Range = 100 µA → Bandwidth = 5 - medium →	V Charge Dis	Nominal potential scharge

CP

Potentiodynamic Cycling with Galvanostatic Acceleration

✓ Turn to OCV between techniques √1				
• 0 1				
$\boxed{1} \underline{\text{Scan E}}_{\text{We}} \text{ with } \mathbf{dE}_{s} = \boxed{5,000} \text{ mV}$				
per dt_s = 12 h 0 mn 0,000 0 s				
from E; = 0,000 V vs. Eoc 🗸				
to Ef = 4,200 V vs. Ref 🗸				
Curtail step duration if III < I f = 10,000 mA 🗸				
Limit (∆Q) > ∆Q M = 1 054,315 mA.h →				
<=> A × M = 0,550				
Record every dQ = 0,500 mA.h 💌				
or dt q = 120,000 0 s				
E Range = 0V;5V 😪 🛄				
Resolution = $100\mu V$				
IRange = 1A				
Bandwidth = 5 - medium 💟				
2 <u>Rest</u> for t R = 6 h 0 mn 0,000 0 s				
Limit IdE _{we} /dt] < dE_R/dt = 0,1 mV/h				
Record every dE R = 5,0 mV				
or dtR = 120,000 0 s				
$(it_{F} = 0 \text{ or } \Delta Q > \Delta Q_{M} \text{ go to } \textcircled{O})$				
ach (1)				
90 (D)				
(4) Go back to seg $\mathbf{N}_{\mathbf{a}^{*}} = 0_{\mathbf{a}^{*}}$ (9999 and back to set				
$for \mathbf{n}_{s} = 0 \qquad fime(s) \#(s) how every i$				
one(s) ////////////////////////////////////				

- Cycling under stepwise potentiodynamic mode.
- Potential sweep defined by setting the potential step amplitude and duration.
- Possible limit of the step duration on the charge or discharge currents value.
- Can be used for PITT (Potentiostatic Intermittent Titration Technique)¹ experiments.

 Successive potential steps with a conditional limit on the minimum current

Bio**Logic**

- Current measured as a function of time, which allows determination of the incremental capacity dx/dV more precisely than CP.
- No relaxation period.
- The magnitude of the current transient can be used to provide a measure of the chemical diffusion flux of the mobile species as a function of time t¹.
- The main drawback is that the ohmic drop across the cell is not eliminated.

LiMn2O4-G_10Ah_PCGA_6-1q_01.mpr

1. W. Weppner and R. A. Huggins, J. Electrochem. Soc. 126, 12, (1977) pp 2258-2266

Galvanostatic Cycling with Potential Limitation

Turn to OCV between techniqu	✓ Turn to OCV between techniques √			
° 0 1 2				
-				
1 <u>Set I</u> to I _s =	130,000 mA 🗸 VS. <none> 🗸</none>			
for at most t1 =	10 h 0 mn 0,000 0 s			
<u>Limit</u> E _{we} > E _M =	4,500 V			
<u>Record</u> every dE1 =	5,0 mV			
or dt 1 =	60,000 0 s			
<u>Hold</u> Em for tm =	1 h 0 mn 0,000 0 \$			
<u>Limit</u> < 1 _m =	0,000 mA 🗸			
<u>Record</u> every dQ =	1,000 mA.h 🐱			
or dtq =	120,000 0 8			
<u>Limit (∆Q)</u> > ∆Q _M =	0,000 mA.h 🐱			
<=> A x =>	0,000			
E Range = 0 V; 5 V 💽 🛄				
L Davies	Resolution = 100 µV			
I Hange =				
Bandwidth =	5 - medium 💙			
2 <u>Rest</u> for t _R =	0 h 15 mn 0,000 0 %			
Limit dE _{we} /dt < dE_R/dt =	0,1 mV/h			
<u>Record</u> every dE R =	5,0 mV			
or dt R = 120,000 0 s				
$[i] t_R = 0 \text{ or } \Delta Q > \Delta Q_M \text{ go to } \textcircled{O}]$				
③ <u>If</u> E _{we} < EL =	(4,200 V go to 1)			

Bio**Logic**

Science Instrume

 Battery cycling under galvanostatic mode i.e. with an imposed current

GCPL

- Possible voltage limitations under current for both charge (positive current) and discharge (negative current)
- GCPL can be used to perform GITT (Galvanostatic Intermittent Titration Technique)² experiments.
- Similarly to PITT, GCPL can be used to have the chemical diffusion coefficient of the mobile species in the electrode.

BioLogic Science Instruments

GCPL

In case of a sluggish process, the charge/discharge is performed until E_L is reached.

It is now possible after processing to see the evolution of E vs x, which is the number of moles of inserted mobile species (Li⁺,OH⁻...).

Other GCPL techniques

GCPL2 : GCPL with a limitation on the voltage of the working electrode and of the counter electrode.

- **GCPL3** : GCPL2 with the possibility to hold potential after charge or discharge.
- **GCPL4** : GCPL with the possibility to set the global time of the charge/discharge period.
- **GCPL5**: GCPL with the possibility to calculate the dynamic resistance at different time .
- **GCPL6** : GCPL with a voltage control and limit on WE-CE.
- **GCPL7** : GCPL but the holding period is performed with a current control.
- **SGCPL** : GCPL with a limitation on the external input/output

See Application Note #1, 2, 3 http://bio-logic.info/potentiostat/notesan.html

CLD/CPW

CLD: Constant Load Discharge

- Discharge of a battery at a constant resistance.
- Potentiostat seen as a constant resistor by the battery.

See Application Note #6, 33, 34 http://bio-logic.info/potentiostat/notesan.html

CPW: Constant Power

- The current is controlled to hold E*I constant.
- Used for determination of Ragone plot (power vs. energy).

Urban profile importation

- GPI Galvano: I control
- PPI Potentio: E control
- RPI Resistance: R control
- PWPI Power: P control

- Up to 3000 sequences in the same technique
- Possibility to repeat one or several sequences
- Profile created step by step or imported from an ASCII file

Urban profile importation

GPI: European standard profile NEDCL on a 40 A.h LFP cell

- Green: discharge at a constant rate C/1
- Red: Temperature change during the constant discharge C/1
- Blue: discharge profile with 4 urban cycles and 1 extra urban cycle
- Repeated 6 times
- Red: Temperature change during the urban cycles

Outline

- 1. Configuration
- 2. DC techniques
- 3. Impedance spectroscopy
- 4. Processing data

Impedance Spectroscopy

- It can be performed either with an applied current (GEIS) or potential (PEIS) mode.
- It can be performed automatically at different states of charge by linking PEIS to GCPL.
- It is used to study the electrode-electrolyte interfaces.
- It can be used to evaluate the dependence of the impedance with the state of charge (SOC).
- It can be used to study aging of the battery (state of health = SOH).

See Application Note #5, 8, 9, 14, 15, 16, 17, 18, 19, 23 http://bio-logic.info/potentiostat/notesan.html See Impedance tutorial

Bandwidth = 5 - medium -

Goback to seq. Ns' = 0

increment cycle number 🛛 🕅

for $\mathbf{n}_{\mathbf{f}} = \mathbf{0}$

Impedance Spectroscopy

Potentio EIS / Galvano EIS techniques

- EIS can performed with an increasing DC bias voltage and current.
- A patented drift correction can be applied to the battery if the steady state is not reached.
- There is a possibility to set sequences with different sinus amplitudes.
- A multisine mode can be used to reduce the measurement duration.

See Application Note #5, 8, 9, 14, 15, 16, 17, 18, 19, 23 http://bio-logic.info/potentiostat/notesan.html See Impedance tutorial

(~ 48 s / scan)

(9999 ends technique) time(s) *(0 for next sequence)*

Impedance Spectroscopy

After each discharge step, an EIS measurement can be performed at OCV. The corresponding EIS spectrum is changing, highlighting changing electrode/electrolyte interfaces.

- Materials: Lithium Iron Phosphate LiFePO₄ / Graphite
- Nominal potential = 3,1V
- Structure: 3D

Impedance Spectroscopy

The two impedance graphs can be fitted with an equivalent circuit using ZFit (see Impedance tutorial)

Bio**Logic**

master CH3 CA2, Ref1

master CH3 CA1, Ref3, Ref2

slave CH5 Ref1

All the battery techniques are also available in stack mode.

 One master Z channel and up to 15 standard slave channels (= 30 cells) with VMP3.

Bio**Logic**

Science Instruments

- EIS or DC measurements on each element of the stack
- Possibility of linked experiments

Stacks

BioLogic Science Instruments

- Stack of 10 elements.
- The impedance of the stack is the sum of the impedance of each element.
- It allows to make a quick comparison of the different charging state of he batteries.

Outline

- 1. Configuration
- 2. DC techniques
- 3. Impedance spectroscopy
- 4. Processing data

Process Data				
Input Files				
D:\EC-Lab\v10.10\Data\Samples\Battery\18650_cyclage_GCPL_1.mpr				
Technique : Galvanostatic Cycling with Potential Limitation Processed File : D:\EC-Lab\v10.10\Data\Samples\Battery\18650_cyclage_GCPL_1_IQ>				
Load Add Remove	<u>C</u> lear			
Variables To select from the input file	To be added			
 ✓ mode ✓ ox/red ✓ error ✓ control changes ✓ Ns changes ✓ counter inc. ✓ time/s ✓ control/V/mA ✓ Ewe/V ✓ dq/mA.h 	 ✓ <l>/mA</l> ✓ (Q-Qo)/mA.h ✓ x ⊂ cycle number ✓ Q charge/mA.h ✓ Q discharge/mA.h ✓ Q discharge/mA.h ✓ Energy/W.h ✓ Energy charge/W.h ✓ Energy discharge/W.h ✓ Energy discharge/W.h 			
All	All			
Process				
Keep only values at the end of every Open circuit period				
Allow Reprocessing Cycles de	efinition auto 💌			
Export As Text	Count half cycles			
	Process Display Close			

Bio**Logic**

Two processing modes: standard and compact depending on the technique used.

Standard processing mode creates a new .mpp file with additional variables as chosen:

- Energy (charge/discharge)
- Intercalation coefficient x
 - Q_{charge} / Q_{discharge}
- Cycle number,
- The number of data points will be the same as in the initial data file

Process Data				
Process Data Input Files D:\EC:Lab\v10.10\Data\Samples\Batter Technique : Galvanostatic Cycling with Processed File : D:\EC:Lab\v10.10\Data' Load Add Remove Image: Comparison of the comparison of	y\18650_cyclage_GCPL_1.mpr otential Limitation \Samples\Battery\18650_cyclage_GCPL_1_cR Qlear To be added dQ/mA.h Q(Q-Q0)/mA.h x cycle number V "Ri"/Ohm			
All Process Keep only values at the end of every Allow Reprocessing Cycles of Export As Text	All open circuit period f on period definition auto Count half cycles			
	Process Display Close			

BioLogic

Compact processing mode calculates an averaged or integrated variable on every step (current or voltage depending the technique)

•Determination of the dynamic resistance with the GCPL5 technique

•Determination of the incremental capacity with a PCGA

Process Data

Processing to get capacity and energy per cycle

- Determination of energy, capacity and efficiency
- Separated for charge and discharge periods
- Stored in a .mpp file

Capacity & Energy per Cycle or Sequence				
Raw File	D:\EC-Lab\v10.10\Data\Samples\Battery\18650_cyclage_(Load			
Experiment	Galvanostatic Cycling with Potential Limitation			
Processed File	D:\EC-Lab\v10.10\Data\Samples\Battery\18650_cyclage_			
Record one point at the end of each Cycle Define cycles by auto				
Processed file variables				
🔽 cycle num	iber 📝 E charge/W.h 📝 C discharge/F			
🔽 Q charge/	/mA.h 📝 E discharge/W.h 📝 Efficiency/%			
🔽 Q discharg	ge/mA.h 📝 C charge/F			
	Process Display Close			

Other applications

All these techniques are also available for the study of other energy devices :

- Fuel cells
- Supercapacitors
- Photovoltaic cells

Thank you for your

attention

30/45