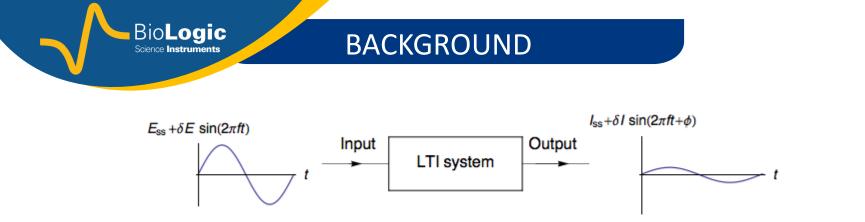


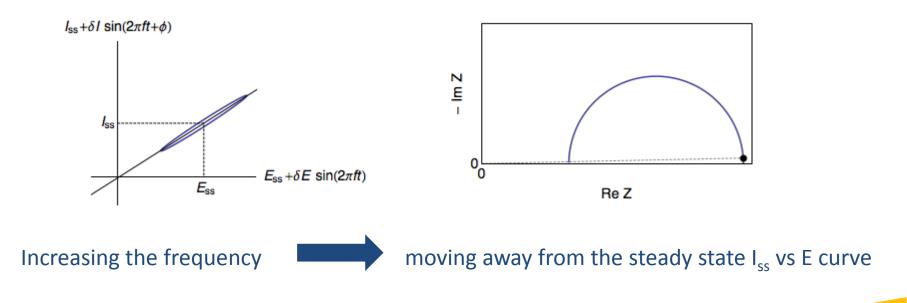
Impedance : Other Transfer Functions (TF)

Background on EIS

Bio**Logic**


Science Instrument

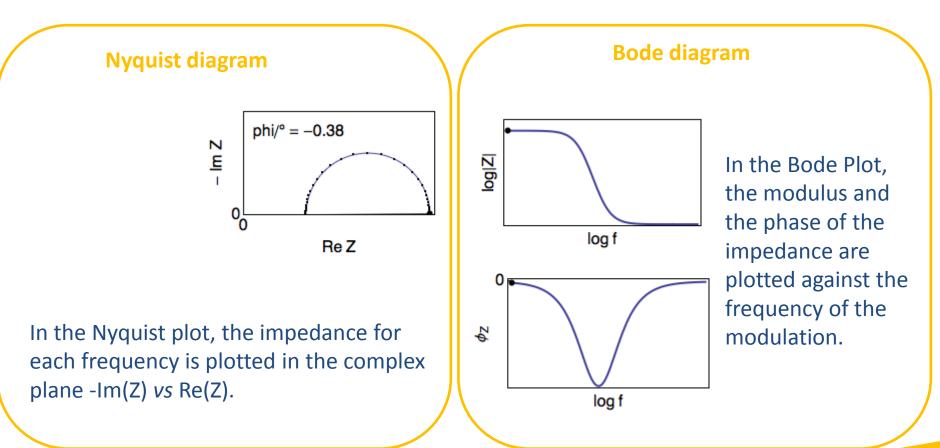
Other Transfer Functions:


- Photo-electrochemical TF (IMVS/IMPS)
- Electro-hydrodynamic TF (EHD)
- Magneto-hydrodynamic TF
- Electro-gravimetric TF
- Raman spectro TF
- Thermo-electrochemical TF (TEC)
- Pneumato-chemical Impedance Spectroscopy (PIS)

•...

Summary

Current response has a the same frequency with an **amplitude** δI and **phase** Φ Perturbation in potential, (it is also possible to perform the same in Galvano)



Bio**Logic**

BACKGROUND

$Z(f) = \mathcal{L}E(t)/\mathcal{L}I(t)$ \mathcal{L} : Laplace Transform

The impedance is a complex number: Z = a + jb = Re(Z) + jIm(Z) (with $j^2 = -1$) $Z = \rho(\cos\varphi + j\sin\varphi)$ with ρ the modulus and φ the phase

What if we replace U and/or I by other input/output quantities? Not only electrical quantities.

It chemical Impedance Spectroscopy but Transmittance spectroscopy This allows one to study the dependence (output) of the system to an input

It is a measurement of magnitude and phase of the output as a function of frequency, in comparison to the input.

Unit is not in Ohm but is the *ratio* of the two quantities H = output/input

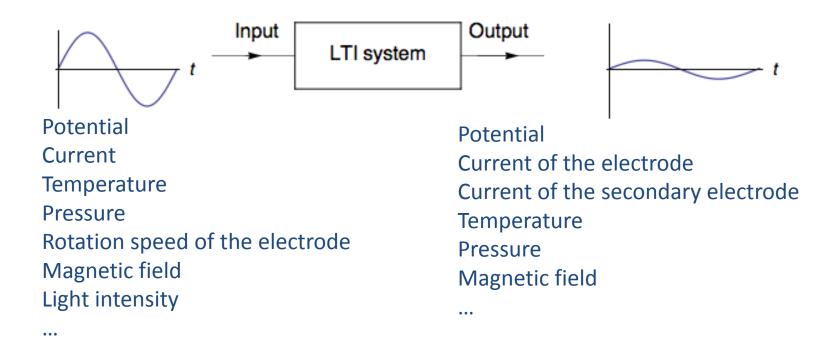
Bio**Logic**

What if we replace U and/or I by other input/output quantities? Not only electrical quantities.

It chemical Impedance Spectroscopy but Transmittance spectroscopy This allows one to study the dependence (output) of the system to an input

It is a measurement of magnitude and phase of the output as a function of frequency, in comparison to the input.

Unit is not in Ohm but is the *ratio* of the two quantities H = output/input


Bio**Logic**

Imput
 Imput
 Imput

 F(input)
 = input x TF = input x
$$\frac{output}{input}$$
 = output

What about if we replace E and/or I by other input/output quantities? Not only electrical quantities.

Bio**Logic**

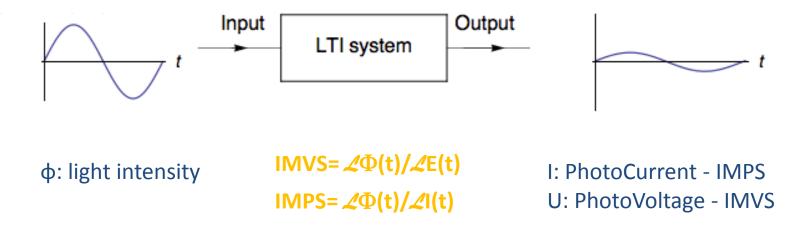
Science Instruments

Other Transfer Functions:

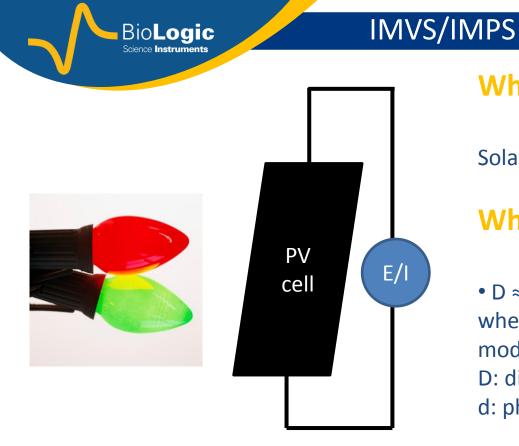
Bio**Logic** Science Instruments

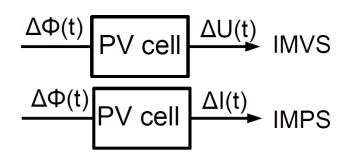
	Input	Output	ref
IMPS/IMVS	Light intensity/φ	PhotoCurrent/I Photovoltage/E	Halme, J. Phys. Chem. Chem. Phys., 2011, 13, 12435–12446
Electro-hydrodynamic TF (EHD)	Rotation speed/Ω	Current/I Voltage/E	Tribollet <i>et al</i> . J. of Electroanal. Chem. , 2004, Vol. 572, 2, Pages 389–398
Magneto-hydrodynamic TF	Magnetic field/B	Current/I Voltage/E	Olivier <i>at al.</i> J. of Electrochem. Soc., 2004, Vol 151, 2, C112-C118,
Electro-gravimetric TF	Quartz resonator frequency/F or adsorbed mass/m Sauerbrey relationship: $\Delta F = k\Delta m$	Voltage/E	Perrot <i>et al</i> . The Journal of Physical Chemistry B, 2002, Vol. 106, 12, 3182-3191
Raman	Raman intensity/Count.s ⁻¹	Current/I Voltage/E	Deslouis <i>et al.</i> Electrochimica acta, 2010, 55, 6299-6307
Thermo-electrochemical TF (TEC)	Temperature/T	Current/I Voltage/E	Olivier, A. <i>et al.</i> Electrochimica Acta, 1996, Vol 41, 17, 2731-2736
Pneumato-chemical Impedance Spectroscopy (PIS)	Pressure/P	Voltage/E	Millet, P. <i>et al.</i> J. Phys Chem B; 2005 109 24016-24024

Other Transfer Functions:


Bio**Logic** Science Instruments

	Input	Output	ref		
IMPS/IMVS	Light intensity/ φ	PhotoCurrent/I Photovoltage/E	Halme, J. Phys. Chem. Chem. Phys., 2011, 13, 12435–12446		
Electro-hydrodynamic TF (EHD)	Rotation speed/Ω	Current/I Voltage/E	Tribollet <i>et al.</i> J. of Electroanal. Chem. , 2004, Vol. 572, 2, Pages 389–398		
Magneto-hydrodynamic TF	Magnetic field/B	Current/I Voltage/E	Olivier <i>at al.</i> J. of Electrochem. Soc., 2004, Vol 151, 2, C112-C118,		
Electro-gravimetric TF	Quartz resonator frequency/F or adsorbed mass/m Sauerbrey relationship: $\Delta F = k\Delta m$	Voltage/E	Perrot <i>et al</i> . The Journal of Physical Chemistry B, 2002, Vol. 106, 12, 3182-3191		
Raman	Raman intensity/Count.s ⁻¹	Current/I Voltage/E	Deslouis <i>et al.</i> Electrochimica acta, 2010, 55, 6299-6307		
Thermo-electrochemical TF (TEC)	Temperature/T	Current/I Voltage/E	Olivier, A. <i>et al.</i> Electrochimica Acta, 1996, Vol 41, 17, 2731-2736		
Pneumato-chemical Impedance	Pressure/P	Voltage/E	Millet, P. <i>et al.</i> J. Phys Chem B; 2005 109 24016-24024		
Each type of Transfer Functions is a disciplin itself.					
We will see only the two first					


We will see only the two first



IMVS/IMPS

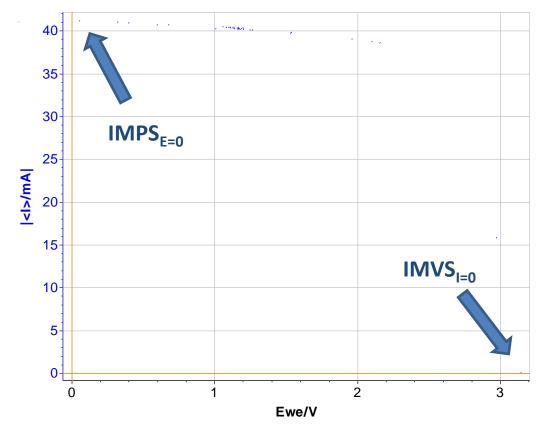
IMVS: Intensity Modulated photoVoltage Spectroscopy IMPS: Intensity Modulated Photocurrent Spectroscopy

TF - IMVS/IMPS

Which system?

Solar cell, Grätzel cell,

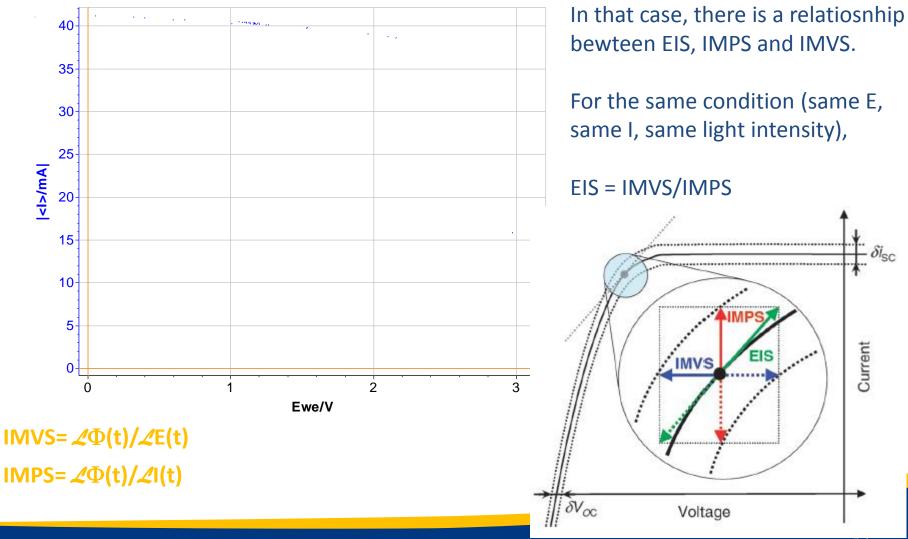
Which information?


• D \approx a . d² / τ_{IMPS} where a \approx 0.393 for weakly absorbed modulated light D: diffusion coefficient of electrons/m².s⁻¹ d: photoelectrode film thickness/m

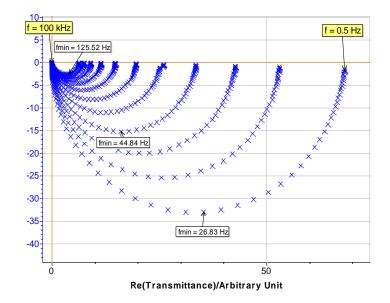
• τ_{IMPS} ≈ τ

• L = $(D \tau)^{1/2}$ L: electron diffusion length/m

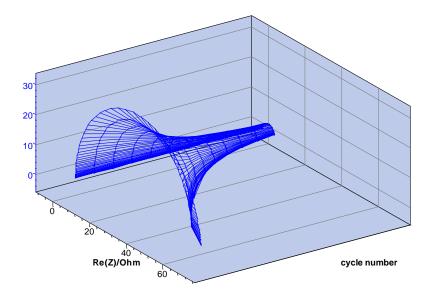
• $\eta_{COL} \approx 1 - (\tau_{IMVS} / \tau_{IMPS})$ η_{COL} :Efficiency electron collection



 $IMVS = \mathcal{L}\Phi(t)/\mathcal{L}E(t)$ $IMPS = \mathcal{L}\Phi(t)/\mathcal{L}I(t)$



IMVS/IMPS

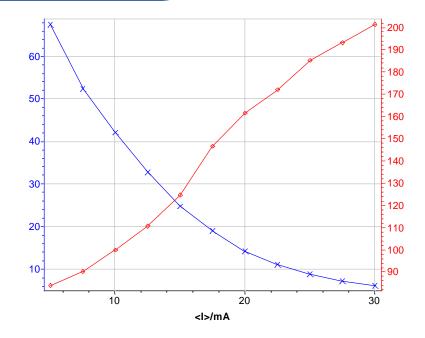


TF - IMVS/IMPS

IMVS/IMPS

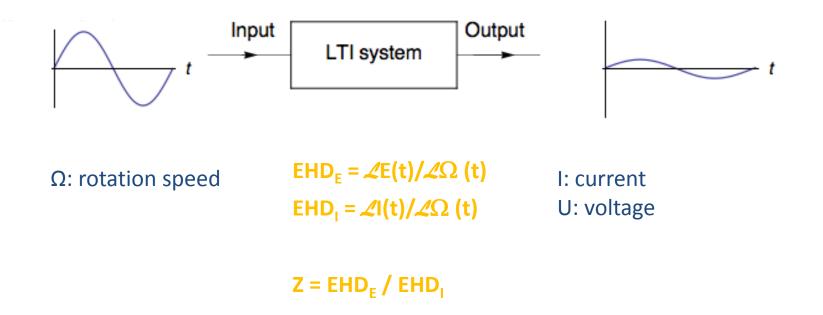
Bio**Logic** Science Instruments

Lifetime of the electron τ_n is related to the characteristic frequency f_c by the following equation $\tau_n = 1/(2 \pi f_c)$

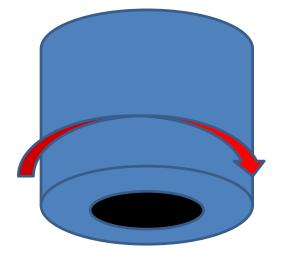


$$f_{\rm min} = 1/(2 \ \pi \ {\rm RC})$$

Bio**Logic** Science Instruments


Resistance, Capacitor, Minimum frequency and Electron lifetim		
of white LED vs. light intensity.		

Light intensity/ W.m ⁻²	R/ Ohm	C/ µF	f _{min} / Hz	τ _n / ms
0.500	67.55	84.04	28.05	5.94
0.750	52.45	90.48	33.56	4.59
1.000	42.12	99.91	35.32	4.04
1.250	32.84	110.78	43.77	3.55
1.500	24.73	124.73	51.62	3.12
1.750	18.95	146.48	57.36	2.74
2.000	14.27	161.35	69.20	2.41
2.250	11.09	172.00	83.52	1.87
2.500	8.83	185.32	97.29	1.64
2.749	7.22	193.07	114.30	1.45
2.999	6.14	201.40	128.69	1.27



Electro-HydroDynamic TF (EHD)

Bio**Logic** Science Instruments

Which system?

Useful for analysis electrochemical system that are either partially or completely limited by mass transport

Which information?

Method to isolate the influence of mass transfer from the electrochemical impedance response of a system

What was the aim of this overview?

EIS is only a part of what is possible to do with Function Transfer. Other method exist and maybe other can be developed to investigate the dynamic behavior of the system.

User has to find the appropriate input and output.

	System	Information	
ElectroHydrodynamic TF (EHD)	 Electrochemical system that are either partially or completely limited by mass transport Partially blocked electrode 	• Mass transfer from the electrochemical impedance response of a system	
PhotoElectrochemical TF (IMVS/IMPS)	• Solar cell	Electron lifetimeDiffusion	
MagnetoHydrodynamic TF	Metal electrode deposition	• Kinetic of the processes	
ElectroGravimetric TF	 Insertion in film Reaction with adsorbed species 	 Kinetic of the processes Chemical identification of the species 	
Raman TF	 Reaction with adsorbed species 	• dynamic information on the interface	
ThermoElectrochemical TF (TEC)	• Redox system	 kinetic of mass transport 	
PneumatoChemical Impedance Spectroscopy	Insertion reactionHydrogen insertion	 phase transformation 	

Feel free to visit our web site, some application notes or EIS handbook may be helpful for your applications:

http://www.bio-logic.info/potentiostat/notesan.html

Thank you for your attention

Lets move to the instruments