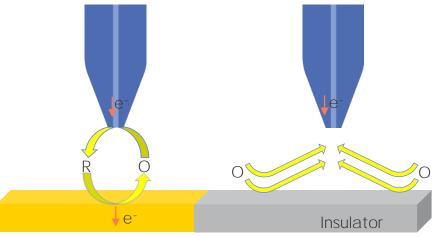


Introduction to dc-SECM on the SECM150

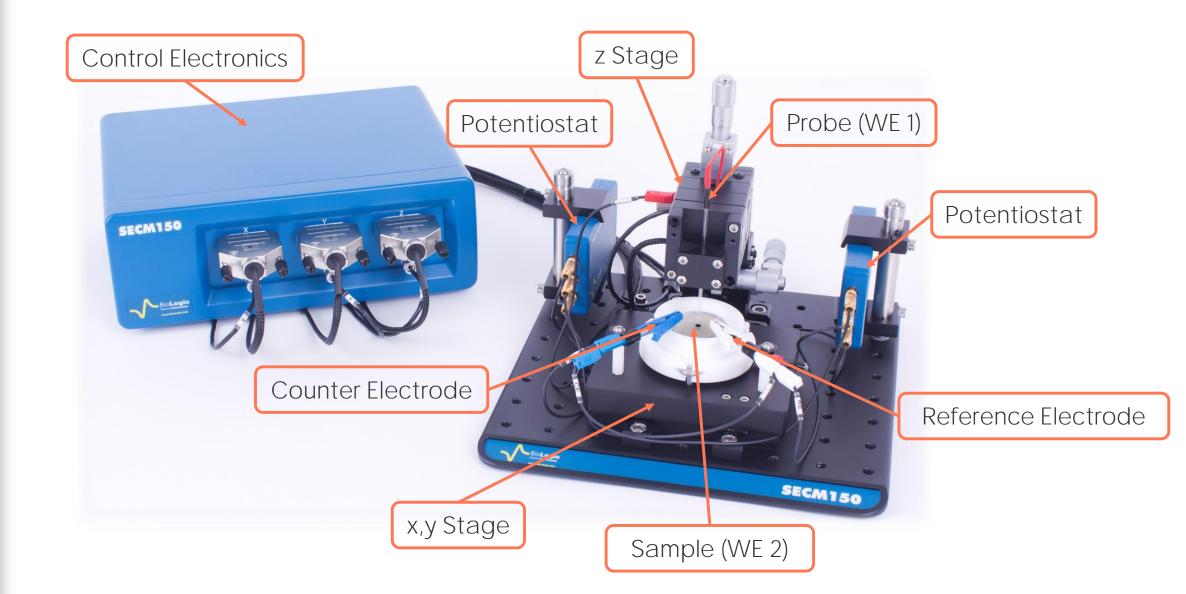
Introduction to SECM

- Background
- dc-SECM Modes
- Experiment Types
- Introduction to the SECM150
 - Specifications
 - Advantages
 - Applications

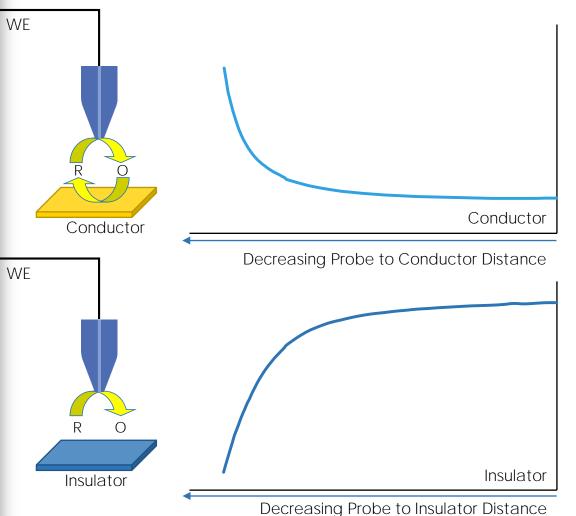
\checkmark


Introduction to SECM

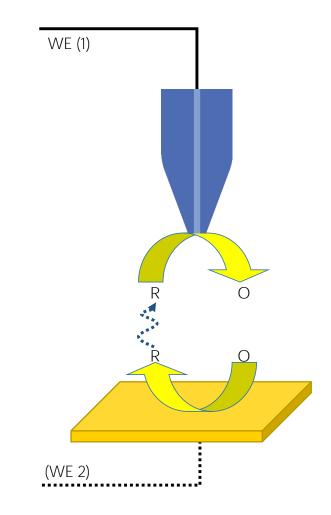
\checkmark


Background

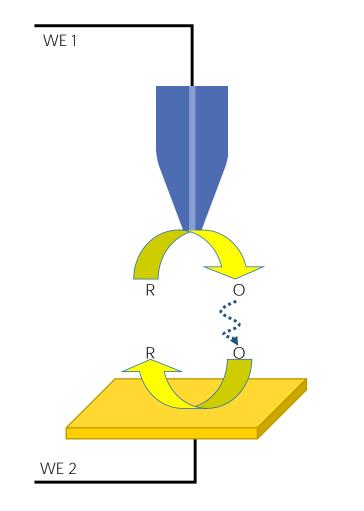
- Local measure of the electrochemical activity of a sample
- UltraMicroElectrode (UME) probe in close proximity to sample is biased to interact with a redox mediator
- Can be used to produce images with contrast reflecting the reactivity of a surface
- Can be used to investigate reaction kinetics
- Data measured can explain bulk behavior


Components of an SECM

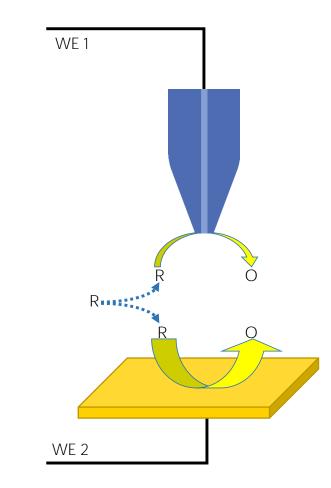
\checkmark


dc-SECM Modes

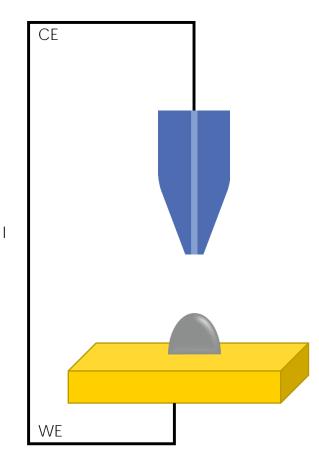
Feedback (FB) mode


- Most common mode
- Diffusion-controlled current measurement of redox mediator added to solution
- Probe biased to reduce or oxidise the mediator
- Sample remains unbiased
- Increase in current (positive feedback) over conductor
- Decrease in current (negative feedback) over insulator

Substrate Generator/Tip Collector (SG/TC) mode


- Substrate *generates* the species which the tip is biased to *collect*
- This species is not originally contained in the solution
- During the measurement the probe moves through the diffusion layer of the generated species at the substrate interface
- The probe is always connected as a working electrode. Depending on the application the sample can act as a second working.

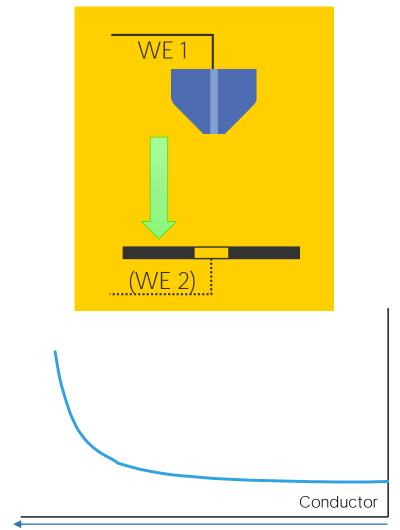
Tip Generator/Substrate Collector (TG/SC) mode


- Tip *generates* the species which the substrate is biased to *collect*
- The generated species may react chemically with the substrate
- The species is not regenerated at the tip
- Typically both the probe and sample are WE
- Tip can be a pipette filled with species of interest

Competition mode

- Also known as Redox Competition mode SECM (RC-SECM)
- Probe and substrate both interact with the same redox mediator
- Redox mediator is already in solution
- Typically both the probe and substrate are WE
- When the substrate activity increases a resulting increase in current is detected by the probe

✓ Direct mode

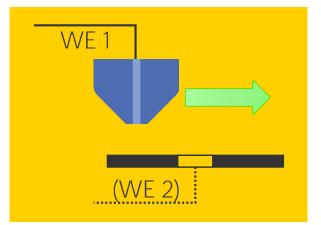

- Three electrode cell with substrate connected as WE and probe as CE
- Localises electric field between probe and sample
- Used for substrate modification including etching, deposition, and patterning.

\checkmark

Experiment Types

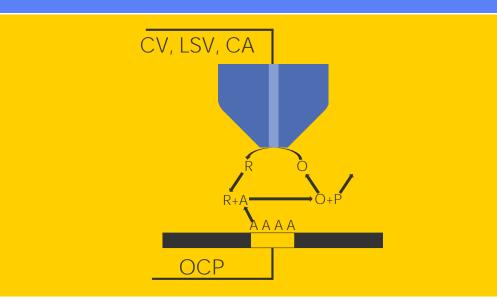
Approach curve

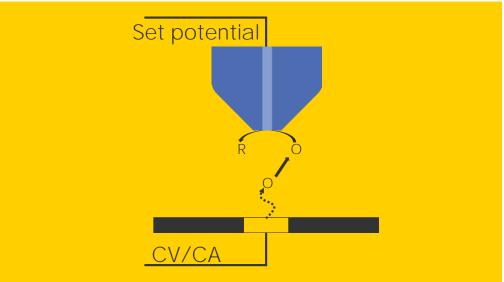
- Used for positioning and stand alone studies
- Signal measured is related to sample activity and probe to sample distance
- Used for quantitative kinetic data for samples hard to study by bulk techniques:
 - Certain interfaces
 - Non-electrochemical substrates: Biological materials
 - Samples difficult to prepare for bulk electrochemistry: 2D materials
- Used to investigate local swelling with time and bias of:
 - Batteries
 - Super capacitors
 - Coatings




Decreasing Probe to Conductor Distance

©Biologic - 2020 - Confidential


- Raster scanning of probe in close proximity of sample
- Electrochemical heterogeneities are visualized
- Electrochemistry can be correlated with sample features
- Changes to local electrochemical activity can be followed over time



Surface Interrogation (SI)-SECM

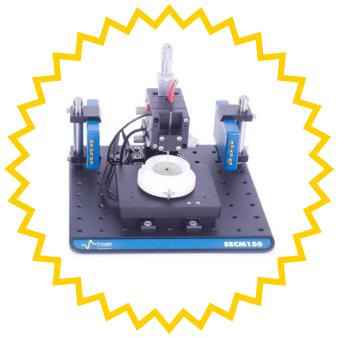
- Quantify adsorbed species
- Predominantly used in studies of catalysts
- No complex data treatment required

Tip Substrate Voltammetry (TSV)-SECM

- Information about ion fluxes from adsorption, desorption, and dissolution of species
- Analogous to rotating ring disc electrode
- Used in catalysis and materials

Introduction to the SECM150

Introduction to the SECM150

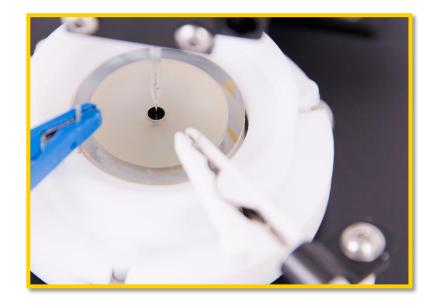

- A dc-SECM only instrument suitable for novice and experienced SECM users
- Provided as a complete system, with only a PC required
- BioLogic's most compact SECM system
- **BioLogic's** first fully piezo positioned SECM
- Designed for high speed, high resolution measurements

SECM150 the right pick!

Did you know in SECM articles published from start of 2016:

- dc-SECM made up over 95% of publications
- Constant height SECM accounted for over 90% of publications
- Only 5% of dc-SECM publications worked outside of the ±2 V range
- A scan range of 200 µm or less is used in over 50% of publications

Specifications


 \mathbf{N}

Dimensions

Control box	90 x 235 x 180 mm (H x W x D)
Scanning stage	190 x 225 x 230 mm (H x W x D)
Potentiostat	97 x 15 x 54 mm (H x W x D)

Available experiments	
dc-SECM	Approach curve Line scan Area scan
Electrochemistry	Cyclic voltammetry Chronoamperometry Linear voltammetry Chrono OCP

Available probes

1, 2, 5, 10, 15, 25 µm

Scanning Stage

- Automated x, y, z scanning using piezo stages
- Macro positioning using lockable micrometers
- x,y stage decoupled from z stage reducing crosstalk

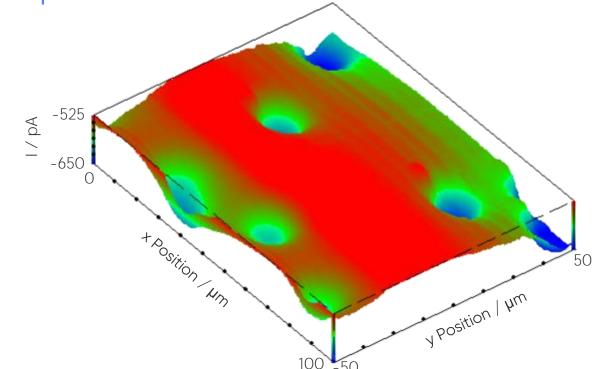
Positioning Specifications	
Positioning system	Closed –loop piezo stages
Automated scan range	x&y: 200 µm; z: 100 µm
Practical minimum step size	50 nm with <10 nm resolution
Max scan speed	200 µm/s
Max data acquisition for line or area scan	20 points/s
Micrometer macro positioning	13 mm range (min. graduation: 10 μ m)

Potentiostats

- Uses two compact PU51 potentiostats
- Both potentiostats are controlled from within the experiment configuration

Potentiostat specification

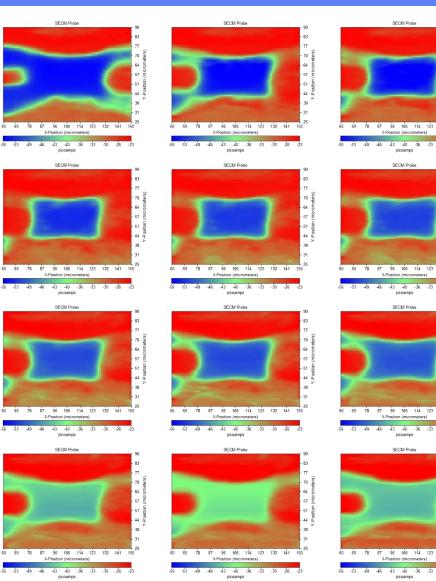
•	
Mode	Pstat only
Current measurement	2.56 x 1 mA to 100 pA
Potential	±2.048 V for applied & measured voltage
Electrometer	<10 pA input bias current and 10 ¹¹ Ω II 5 pF input impedance (R/C)
Time base	Typically 100 µs
Sampling rate	1 mHz to 10 kHz
Max. data samples	100000
Electrical isolation	Yes


Approach Curves

- Fully automated probe approach curves over entire z piezo range
- Automated triggers can be implemented to:
 - Revise the step size at user defined signal change
 - Terminate the experiment at user defined signal change
- Used for positioning, and substrate characterization

Step Size Trigger (Prob	e)		
Trigger on %Bulk	On	Revised Step Size	2.500µm 1.667µm
Maximum (%bulk)	125%		1.250µm 1.000µm
Minimum (%bulk)	90%		0.833µm 0.714µm
			0.625µm 0.556µm 0.500µm
- Terminate Experiment T	rigger (Probe)		
Trigger on %Bulk	On	Trigger on Value	Off
Maximum (%bulk)	175%	Maximum (value)	N/A
Minimum (%bulk)	50%	Minimum (value)	N/A
Retra	ct Probe on Expe	riment Terminate Trigger	5

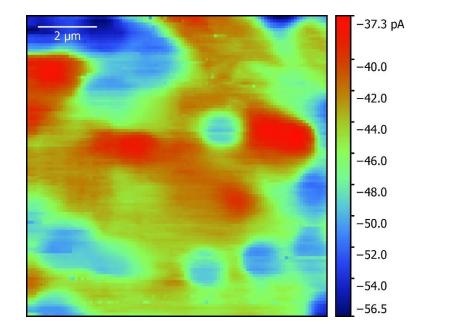
- Fully automated area scans in x,y for local mapping of substrate electrochemical activity
- Can be performed at scan rates up to 200 µm/s, suitable for dynamic samples

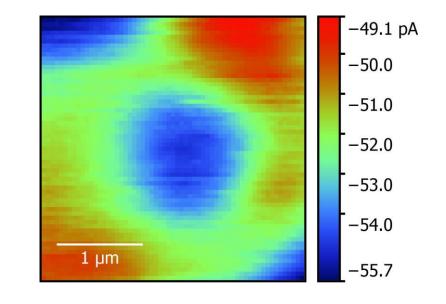

Measurement of polycarbonate membrane with 12 µm pores over Au

\checkmark

Advantages

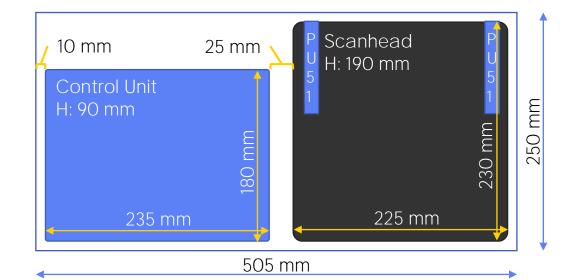
- Faster practical scan speeds than, resulting in shorter experiment times
 - Each experiment on the right took 10.5 min for 91 x 66 points
- Beneficial for investigating fast, dynamic processes
- Beneficial to the study of living cells, which can die with extended scanning periods




Spider plant stomata after exposure to total darkness measured every ~10.5 minutes

• Minimum step size of 50 nm

• Designed for use with **BioLogic's** 1 µm probes



Measurement of polycarbonate membrane with 1 μ m pores over Au over 10 x 10 μ m² and 3 x 3 μ m² areas

- The SECM150 was designed to be as compact as possible
- The SECM150 is ideal for applications where space is limited
- The SECM150 has even been demonstrated to fit in an off the shelf glove bag

29

 \sim

Applications

What fields is the SECM150 of the most interest to?

• Catalysis

Example: I. Liberman, W. He, R. Shimoni, R. Ifraemov, I. Hod, Chem. Sci. 11 (2020) 180-185

• Biology

Example: F. Razzaghi, J. Seguin, A. Amar, S. Griveau, F. Bedioui, Electrochim. Acta 157 (2015) 95-100

• Materials

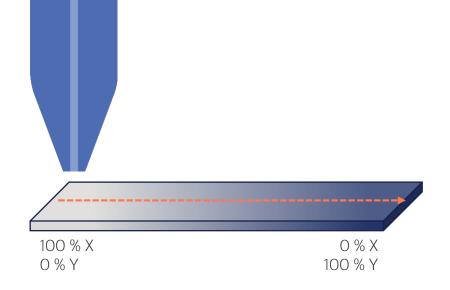
Example: T. Bourgeteau, S. Le Vot, M. Bertucchi, V. Derycke, B. Jousselme, S. Campidelli, R. Cornut, J. Phys. Chem. Lett. 5 (2014) 4162–4166

• Corrosion and coatings

Example: Y. Elkebir, S. Mallarino, D. Trinh, S. Touzain, Electrochim. Acta 337 (2020) 135766

• Green energy

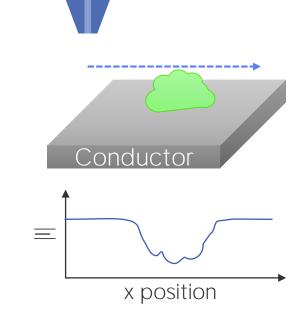
Example: K. Fic, A. Płatek, J. Piwek, J. Menzel, A. Ślesiński, P. Bujewska, P. Galek, E. Frąckowiak, Energy Storage Mater. 22 (2019) 1-14


Catalysis

Topics of interest:

- High throughput screening of combinatorial libraries
- Screen individual catalytic materials
- Understand adsorption mechanisms

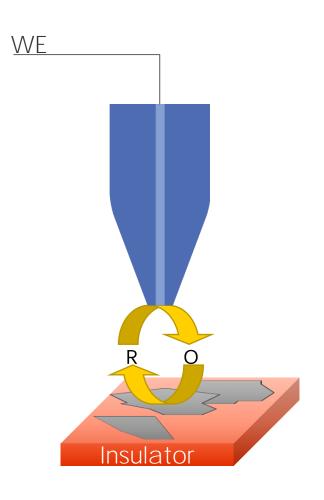
Requirements:


- In-situ screening
- Local assessment
- Chemical selectivity

Biology

Topics of interest:

- Investigation of stress on biological systems
- Study ion flow through membranes
- Measure enzymatic activity
- Determine uptake of metabolites


Requirements:

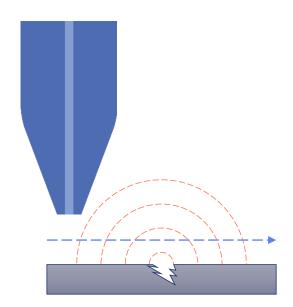
- *In-situ* measurements
- Morphology information
- Chemical selectivity
- Ability to follow system evolution

Materials

Topics of interest:

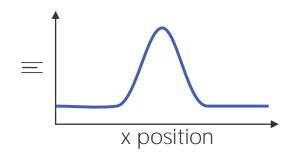
- Study local electronic transport
- Investigate the effect of the local structure of a material
- Perform screening for materials discovery

Requirements:


- Local information
- Information about electronic characteristics

34

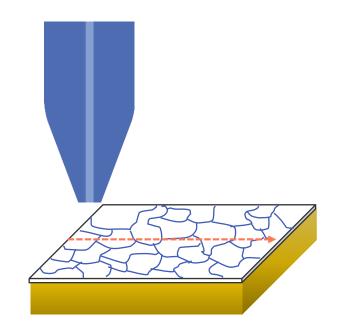
Corrosion and Coatings

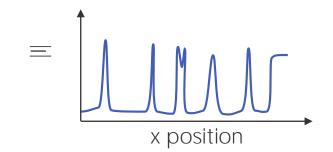

Topics of interest:

- Study coating degradation & failure
- Follow healing of smart coatings
- Determine the effectiveness of corrosion inhibitors
- Follow the evolution of corrosion

Requirements:

- *In-situ* measurements
- Local information
- Ability to follow system evolution
- Identify variations in activity


Green Energy


Topics of interest:

- Investigate electrode swelling
- Study the solid electrolyte interface
- Examine fuel cell catalysts
- Screen novel materials

Requirements:

- Local electrochemical information
- *In-situ* measurements
- Non-destructive measurements
- Ability to follow system evolution

Summary

- The SECM150 is a compact dc-SECM only system designed for high speed, high resolution scanning
- SECM150 is highly applicable to many experiments
- The SECM150 is of interest to catalysis, biology, materials, corrosion and coatings, green energy

Thank you

Resources

Tutorials

- <u>How to get clear images in SECM</u> Learning Center Articles
- <u>SECM101: An Introduction to Scanning Electrochemical</u> <u>Microscopy</u>

SECM150 resources

Application Notes

- <u>Achieving micron scale measurements using the SECM150</u>
- Investigation of the diffusion of ferricyanide through porous membranes using the SECM150
- <u>Using the SECM150 to Measure an NMC Battery Electrode</u> Technical Notes
- <u>Using the SECM150 in a Controlled Atmosphere in a Glove</u>
 <u>Bag</u>

Learning Center Articles

• <u>SECM to form and screen micron scale electrocatalysts</u>